2.5.  Механические испытания материалов

Для определения физико-механичес 082;их свойств материалов наиболее широко применяют статические испытания материалов на растяжение. Объясняется это тем, что механические характеристики, получаемые при испытании на растяжение, позволяют сравнительно точно определить поведение материала при других видах деформаций и этот вид испытаний, кроме того, наиболее легко осуществим.

По механическим свойствам материалы могут быть разделены на две основные группы: пластичные и хрупкие. У первых разрушению предшествует возникновение значительных остаточных деформаций; вторые разрушаются при весьма малых остаточных деформациях. Пластичными материалами в обычных условиях являются малоуглеродиста 03; сталь, медь; хрупкими - некоторые специальные сорта стали, чугун.

Чтобы иметь наглядное представление о поведении материала при растяжении, строят кривую зависимости между величиной удлинения испытываемого образца и величиной вызвавших его сил, так называемую диаграмму растяжения. Типичная диаграмма растяжения образца из малоуглеродисто 81; стали представлена на рис. 2.6, которую можно условно разделить на четыре участка.

Осуществляется запись графика зависимости между действующей на образец растягивающей силой F и удлинением  Δ l. Разделив абсциссы Δ l на первоначальную длину l, а ординаты F на первоначальную площадь поперечного сечения А, получим график зависимости напряжения   σ  = F /A  от продольной деформации ε = Δ l /l .

До значения напряжения, соответствующег 86; точке А диаграммы, имеет место линейная зависимость между величинами относительного удлинения и напряжения, т.е. соблюдается закон Гука. Напряжения соответствующие точке А диаграммы, называются пределом пропорционально 89;ти материала и обозначаются  σпц. При переходе за точку А справедливость закона Гука нарушается: удлинение растет интенсивнее, чем сила; прямая ОА переходит в кривую АВ, обращенную выпуклостью кверху.

 

Рис. 2.6

До точки В диаграммы увеличение растягивающей силы практически не вызывает остаточных деформаций образца, материал деформируется упруго и напряжение, соответствующее точке В, называется  пределом упругости  σу.

Предел пропорционально 89;ти σпц  и предел упругости σу  для многих материалов, например для стали, оказываются настолько близки, что зачастую их считают совпадающими и отождествляют, несмотря на физическое различие этих пределов.

 Угол наклона начального участка ОА диаграммы растяжения пропорцио-нален модулю продольной упругости материала

tg α  = σ / ε  = E.

Следовательно, чем круче этот участок, тем больше модуль упругости материала, тем  он  жестче.

Кривая АВ от точки В переходит в горизонтальную или почти горизонтальную прямую ВС, что указывает на значительное возрастание удлинения при постоянном или очень незначительном возрастании силы; материал, как говорят, течет. Напряжение, при котором наблюдается текучесть материала, называется пределом текучести  σт.

При достижении предела текучести поверхность образца становится матовой, так как на ней появляется сетка линий Людерса-Чернова, наклоненных к оси под углом 45°, их появление свидетельствует о сдвиге кристаллов образца.

Предел текучести является основной механической характеристикой при оценке прочности пластичных материалов.

Точка D соответствует пределу прочности или временному сопротивлению  -  σвр. Пределом прочности называют отношение максимальной силы, которую может выдержать образец, к первоначальной площади его поперечного сечения.

Временное сопротивление условное напряжение (при этом напряжении на образце образуется резкое местное сужение, так называемая шейка), намечается место последующего разрыва. Образец сильно удлиняется за счет пластической деформации шейки. Площадь сечения шейки уменьшается и для доведения образца до разрушения требуется сила меньше Fвр, это отмечает участок  диаграммы, отклоняющийся вниз к оси абсцисс. Точка К соответствует разрушению образца.

Действительные напряжения в сечении шейки не уменьшаются, а все время растут; площадь сечения шейки уменьшается более интенсивно, чем растягивающая сила.

Точка Е соответствует напряжению, возникающему в наименьшем поперечном сечении шейки в момент разрыва.
Hosted by uCoz