3. Валы и оси

Конструкция самолета содержит множество вращающихся деталей и узлов, работающих в различных условиях. Так, детали двигателей, редукторов, воздушные винты, колеса шасси движутся с большими угловыми скоростями, испытывая значительные динамические нагрузки и подвергаясь в некоторых случаях интенсивному нагреву. Другие детали, например, детали механизмов выпуска-уборки шасси, детали механизмов управления самолетом периодически вращаются с малыми угловыми скоростями. Для поддержания вращающихся деталей и для передачи вращающего момента от одной детали к другой (в осевом направлении) в конструкциях используют детали, называемые валами (рис. 3.1, а – г).

Рис. 3.1. Эскизы валов и осей

В зависимости от вида испытываемой деформации условно различают:

-     простые валы – работают в условиях кручения, изгиба, как, например, вал воздушного винта самолета, нагруженный силой веса винта и вращающим моментом, или вал привода агрегатов двигателя, несущий зубчатые колеса. Зубчатые колеса могут быть насажены на вал или изготовлены с ним как одно целое;

-     торсионные валы – работают лишь в условиях кручения, т.е. передают только вращающий момент (валы приводов управления закрылками ВС);

-     оси – поддерживающие невращающиеся валы, работающие лишь в условиях изгиба. Например, оси тормозных колес шасси, оси роликов тросовой системы управления, оси шарнирных соединений стоек шасси, элеронов, рулей, управляемых стабилизаторов не вращаются.

По геометрической форме валы бывают прямыми (рис. 3.1, б), коленчатыми (рис. 3.1, в) (в поршневых двигателях и компрессорах) гибкими (рис. 3.1, г), а оси только прямыми (рис. 3.1, а). Гибкие валы дают возможность передавать вращение с изменяющейся геометрией оси, их используют в переносных механизированных инструментах, в приборах и др.

В зависимости от расположения, быстроходности и назначения валы называют входными, промежуточными, выходными, тихо- или быстроходными, распределительными и т.п.

Конструктивные элементы. Опорные части валов, воспринимающие радиальные нагрузки (рис. 3.2, а), называют цапфами, а воспринимающие осевые нагрузки (рис. 3.2, б) – пятами. Концевые цапфы называют шипами (в подшипниках скольжения), а промежуточные – шейками. Шипы чаще всего бывают цилиндрическими (рис. 3.2, а), а также коническими и сферическими (рис. 3.2, в, г).

Рис. 3.2. Опорные части валов

 

Прямой вал ступенчатой формы более удобен для монтажа деталей и по профилю приближается к брусу равного сопротивления. Переход от одной ступени к другой может осуществляться канавкой для выхода шлифовального круга (рис. 3.3, а), однако это приводит к повышению концентрации напряжений, галтелью (рис. 3.3, б, в) – плавным переходом по дуге с постоянным или переменным радиусом (в этом случае снижается концентрация напряжений и повышается прочность вала).

Рис. 3.3. Переходные участки вала

Закрепление деталей на валах от осевого перемещения осуществляют с помощью буртиков (рис. 3.4, а), гаек (рис. 3.4, б), посадки с натягом (рис. 3.4, в), пружинных колец (рис. 3.4, г). Передачу вращающего момента осуществляют за счет устройства шпоночных, шлицевых и других соединений валов.

Рис. 3.4. Крепление деталей на валах

Оси и валы авиационных конструкций – пустотелые. Канал уменьшает массу вала, кроме того, в ряде случаев через полый вал проходят детали системы смазки или управления.

Технические условия на изготовление валов зависят от требований к конструкции. Наиболее жесткие требования по точности и шероховатости поверхности предъявляются к шейкам валов, на которые устанавливают подшипники качения.

Материалы. Для изготовления валов используют углеродистые стали марок 20, 30, 40, 45 и 50, легированные стали марок 20Х, 40Х, 40ХН, 18Х2Н4МА и др., титановые сплавы ВТ3-1, ВТ6 и ВТ9.

Выбор материала, термической и химико-термической обработки определяется конструкцией вала и опор, условиями эксплуатации.

Расчет валов и осей. Валы и оси рассчитывают на прочность, жесткость и колебания. Основной причиной выхода из строя валов является недостаточная их прочность при длительной работе, усталостное разрушение металла.

Нагрузки на валы создают силы и вращающие моменты, действующие в зубчатых, червячных, цепных и других передачах. Расчет ведут по наибольшей из длительно действующих нагрузок.

Проектирование вала включает три этапа: предварительное определение размеров, разработку конструкции и проверочный расчет.

При проектном расчете приближенно определяют из условия прочности при кручении диаметр вала и проводят его конструирование. Проверочный расчет ведут на статическую прочность вала и усталость материала, а при повышенных требованиях – на жесткость и колебания.

Расчет на прочность. В предварительном (проектном) расчете при отсутствии данных об изгибающих моментах диаметр вала может быть найден по известному значению крутящего момента из условия прочности по сниженным допускаемым напряжениям:

,                                      (3.1)

 

где Т – крутящий момент в расчетном сечении вала;

[τK] – допускаемое напряжение на кручение, [τK] = 20…25 МПа под шкив, звездочку или муфту; для средних участков вала [τK] = 10…20 МПа;

Р – передаваемая мощность, кВт;

n – частота вращения вала, об./мин.

После определения расчетного диаметра вала определяют диаметры других ступеней, изменяя их на 2…5 мм. Независимо от результатов расчета диаметр выходного конца вала может быть принят равным 0,8…1,2 диаметра вала электродвигателя, с которым он будет соединен муфтой.

Наименьший диаметр промежуточного вала принимают обычно равным внутреннему диаметру подшипника.

Расчет на статическую прочность. Расчет ведут по наибольшей возможной кратковременной нагрузке, повторяемость которой мала и не может вызвать усталостного разрушения.

Валы работают в условиях изгиба и кручения, эквивалентное напряжение

,                                               (3.2)

 

где σ и τ – наибольшие напряжения от изгибающего момента Мх и крутящего момента Т

;                  ,                         (3.3)

 

где WX и Wρ – соответственно осевой и полярный момент сопротивления сечения вала диаметром d, WX = 0,1d3; Wρ = 0,2d3, а т.к. Wρ = 2WX, то с учетом этих соотношений можно записать

.                              (3.4)

 

Запас прочности по пределу текучести

.                                     (3.5)

 

Обычно принимают допускаемый запас прочности [nT] = 1,2…1,8.

Полагают, что имеет место симметричный цикл напряжений при изгибе вала и отнулевой цикл напряжений при его кручении.

Сопротивление материала детали усталости может быть повышено за счет ее поверхностного упрочнения: поверхностной закалки, обкатки роликом, наклепом.

Жесткость валов. Расчет на прочность не всегда обеспечивает достаточную жесткость (изгибную и крутильную) валов, необходимую для нормальной работы подшипников, передач, обеспечения точности механизмов и др. При значительном прогибе вала происходит перекос зубчатых колес, возрастает неравномерность распределения нагрузки по длине зуба, возможно защемление тел качения в подшипниках.

При проектировании валов проверяют прогибы и углы поворота сечений. Их вычисляют, используя дифференциальное уравнение изогнутой оси балки, и другими методами.

Hosted by uCoz